
Designing Competent Mutation Operators Via
Probabilistic Model Building of Neighborhoods

Kumara Sastry1,2 and David E. Goldberg1,3

1 Illinois Genetic Algorithms Laboratory (IlliGAL)
2 Department of Material Science & Engineering

3 Department of General Engineering
University of Illinois at Urbana-Champaign, Urbana IL 61801

{ksastry,deg}@uiuc.edu

Abstract. This paper presents a competent selectomutative genetic al-
gorithm (GA), that adapts linkage and solves hard problems quickly, re-
liably, and accurately. A probabilistic model building process is used to
automatically identify key building blocks (BBs) of the search problem.
The mutation operator uses the probabilistic model of linkage groups
to find the best among competing building blocks. The competent se-
lectomutative GA successfully solves additively separable problems of
bounded difficulty, requiring only subquadratic number of function eval-
uations. The results show that for additively separable problems the
probabilistic model building BB-wise mutation scales as O(2km1.5), and
requires O(

√
k log m) less function evaluations than its selectorecombi-

native counterpart, confirming theoretical results reported elsewhere [1].

1 Introduction

One of the key challenges in designing an effective mutation operator is ensuring
that it searches in the correct neighborhood. Existing mutation operators usually
search in the local neighborhood of an individual, without taking into account the
global neighborhood information. Recently, it was shown that a selectomutative
algorithm that performs hillclimbing in building-block space can successfully
solve boundedly-difficult problems in polynomial time as opposed to exponential
time of simple mutation operators [1]. The results also showed that for additively
separable search problems with deterministic fitness functions, building-block-
wise mutation provided significant speed-up over recombination. The analysis
assumed that both mutation and crossover operators had linkage information.

While several competent recombination operators that adapt linkage have
been successfully and systematically designed, little attention has been paid
to the development of competent mutation operators. Similarly, in local-search
literature, while the importance of using a good neighborhood operator is often
highlighted [2,3], there are no systematic methods for designing neighborhood
operators that can solve a broad class of bounding problems. Therefore, the
objective of this paper is to propose a methodology of automatically discovering
global neighborhood information (which was assumed to be known a priori in
[1])) from a population of sampled candidate solutions.
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This paper systematically designs a competent mutation operator that adapts
linkage and performs local search in the building-block space. The important
substructures are automatically identified using probabilistic models developed
via machine-learning techniques. Specifically, we use the probabilistic-model-
building procedure of extended compact genetic algorithm (eCGA) [4] to identify
the linkage groups (or global neighborhood) of a search problem.

This paper is organized as follows. The next section gives a brief literature
review, followed by a discussion on the relation between neighborhood operators
and linkage groups. We then introduce eCGA followed by a description of the BB-
wise mutation algorithm and provide empirical results on the scalability of each
algorithm. Finally, we outline future research directions followed by conclusions.

2 Literature Review

One of the key challenges in the area of genetic and evolutionary algorithms is
the systematic design of genetic operators with demonstrated scalability. One
such design-decomposition theory for developing effective GA designs has been
proposed [5,6,7]. Based on the design-decomposition theory many competent
GAs have been designed, which can be broadly classified into three categories:

Perturbation techniques include the messy GA [8], fast messy GA [9], gene
expression messy GA [10], linkage identification by nonlinearity check GA,
and linkage identification by monotonicity detection GA [11], dependency
structure matrix driven genetic algorithm (DSMDGA) [12], and linkage iden-
tification by limited probing [13].

Linkage adaptation techniques such as linkage learning GA [14,15].
Probabilistic model building techniques [16,17] such as population-based

incremental learning [18], the bivariate marginal distribution algorithm [19],
the extended compact GA (eCGA) [4], iterated distribution estimation al-
gorithm [20], Bayesian optimization algorithm (BOA) [21].

While the above techniques are selectorecombinative GAs, little attention has
been paid to the systematic design of selectomutative GAs that utilize linkage
(or neighborhood) information. Recently, we demonstrated that a mutation op-
erator that performs local search in building-block neighborhood takes problems
that were intractable by a fixed mutation operator and renders them tractable
[1], requiring only polynomial number of function evaluations. In the study, we
assumed that linkage information was known, which is not usually the case.
Therefore, in this paper, we present a technique to identify the neighborhood
information as a probabilistic model using a population of sampled solutions.

3 Neighborhood Operators and Linkage Groups

In local search literature, researchers have often recognized the importance of
a good neighborhood operator in determining the effectiveness of a search al-
gorithm [2,3,22,23,24]. A neighborhood operator that is capable of not only ef-
ficiently sampling the local neighborhood, but also able to jump to new less
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sampled neighborhoods, has often yielded good results [23,24]. Oftentimes the
neighborhood operators are designed for a particular search problem on an ad-
hoc basis. There are no systematic procedures or analytical guidance for de-
signing a good neighborhood operator that can work on a broad class of search
problems.

In genetic algorithms, while significant attention is paid to the design of re-
combination operators, little or no attention is paid to the design of mutation
operators. In GAs, mutation is usually a secondary search operator which per-
forms random walk locally around a solution. On the other hand, in evolution
strategies (ES) [25], in which mutation is the primary search operator, significant
attention has been paid to the development of mutation operators. Several mu-
tation operators, including adaptive techniques, have been proposed [25,26,27,
28,29]. While the mutation operators used in ES are powerful search operators,
the neighborhood information is still local around a single or few solutions.

However, for solving boundedly difficult GA-hard problems, local neighbor-
hood information is not sufficient, and a mutation operator which uses local
neighborhoods requires exponential time [30]. Therefore, we utilize machine-
learning tools and a population of candidate solutions of the search problem
for automatically building global neighborhood (or linkage) information into the
mutation operator. Unlike, adaptive mutation techniques in ES, which usually
have local neighborhood information adapted over time, our method leads to a
more global induction of the neighborhood. Specifically, we build probabilistic
models of global neighborhood information by sampling candidate solutions to
the search problem. The mutation operator proposed in this paper, utilizes the
global neighborhood information to search among competing sub-solutions.

The procedure used to build the neighborhood information is based on the
model-building procedure of eCGA, which is explained in the following section.

4 Extended Compact Genetic Algorithm (eCGA)

The extended compact GA proposed by Harik [4] is based on a key idea that
the choice of a good probability distribution is equivalent to linkage learning.
The measure of a good distribution is quantified based on minimum description
length (MDL) models. The key concept behind MDL models is that all things
being equal, simpler distributions are better than more complex ones. The MDL
restriction reformulates the problem of finding a good distribution as an opti-
mization problem that minimizes both the model complexity as well as model
inaccuracy. The probability distribution used in eCGA is a class of probability
models known as marginal product models (MPMs). MPMs are formed as a
product of marginal distributions on a partition of the genes. MPMs also facil-
itate a direct linkage map with each partition separating tightly linked genes.
For example, the following MPM, [1,3][2][4], for a four-bit problem represents
that the 1st and 3rd genes are linked and 2nd and 4th genes are independent.

The eCGA can be algorithmically outlined as follows:

1. Initialization: The population is usually initialized with random individuals.
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2. Evaluate the fitness value of the individuals
3. Selection: The eCGA uses an s-wise tournament selection [8].
4. Build the probabilistic model: In eCGA, both the structure and the param-

eters of the model are searched. A greedy search heuristic is used to find an
optimal model of the selected individuals in the population.

5. Create new individuals: In eCGA, new individuals are created by sampling
the probabilistic model.

6. Replace the parental population with the offspring population.
7. Repeat steps 2–6 until some convergence criteria are met.

Two things need further explanation, one is the identification of MPM using
MDL and the other is the creation of a new population based on MPM. The
identification of MPM in every generation is formulated as a constrained opti-
mization problem, that minimizes the sum of the model complexity, Cm, which
represents the complexity of the model and compressed population complexity,
Cp, which represents the inaccuracy of the model.

In essence, the model complexity, Cm, quantifies the model representation
size in terms of number of bits required to store all the marginal probabilities.
Let, a given problem of size � with binary alphabets, have m partitions with ki

genes in the ith partition, such that
∑m

i=1 ki = �. Then each partition i requires
2k − 1 independent frequencies to completely define its marginal distribution.
Furthermore, each frequency is of size log2(n), where n is the population size.
Therefore, the model complexity (or the representation size), Cm, is given by

Cm = log2(n)
m∑

i=1

(
2ki − 1

)
. (1)

The compressed population complexity, Cp, quantifies the data compression in
terms of the entropy of the marginal distribution over all partitions. Therefore,
Cp is evaluated as

Cp = n

m∑

i=1

2ki∑

j=1

−pij log2 (pij) (2)

where pij is the frequency of the jth gene sequence of the genes belonging to
the ith partition. In other words, pij = Nij/n, where Nij is the number of
chromosomes in the population (after selection) possessing bit-sequence j ∈
[1, 2ki ] 1 for ith partition.

The following greedy search heuristic is used to find an optimal model:

1. Assume each variable is independent of each other.
2. Compute the model complexity and population complexity values of the

current model.
3. Consider all possible 1

2�(� − 1) merges of two variables.
4. Evaluate the model and compressed population complexity values for each

model structure.
1 Note that a BB of length k has 2k possible sequences where the first sequence denotes

be 00· · ·0 and the last sequence 11· · ·1
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5. Select the merged model with lowest combined complexity.
6. If the combined complexity of the best merged model is better than the

combined complexity of the model evaluated in step 2., replace it with the
best merged model and go to step 2.

7. If the combined complexity of the best merged model is less than or equal
to the combined complexity, the model cannot be improved and the model
of step 2. is the probabilistic model of the current generation.

The offspring population are generated by randomly choosing subsets from the
current individuals according to the probabilities of the subsets as calculated in
the probabilistic model.

Analytical models have been developed for predicting the population-sizing
and the scalability of probabilistic model building GAs [31,32]. The models pre-
dict that the population size required to solve a problem with m building blocks
of size k with a failure rate of α = 1/m is given by

n ∝ 2k
(σBB

d

)
m log m, (3)

and the number of function evaluations is given by

nfe ∝
(σBB

d

) √
k · 2km1.5 log m, (4)

where σBB is fitness-variance of a BB and d is the signal difference between
competing BBs [6].

Equations 3 and 4 are verified with empirical results for the m k-deceptive
function [33] with loose linkage in Figures 1(a) and 1(b). By loose linkage we
mean that the components of a BB are located far apart from each other in
the chromosome. Fixed recombination operators such as one-point crossover or
uniform crossover need exponential time to solve such loosely-linked deceptive
problems [34]. The results show that eCGA automatically identifies the linkage
groups and solve additively separable GA-hard problems, requiring only sub-
quadratic number of function evaluations.

In obtaining the empirical results, we use a tournament selection with tour-
nament size of 8. An eCGA run is terminated when all the individuals in the pop-
ulation converge to the same fitness value. The average number of BBs correctly
converged are computed over 30 independent runs. The minimum population
size required such that m−1 BBs converge to the correct value is determined by
a bisection method [35]. The results of population-size is averaged over 30 such
bisection runs, while the results for the function-evaluation ratio is averaged over
900 independent eCGA runs.

5 Probabilistic Model Building BB-Wise Mutation

As explained in the previous section, eCGA builds marginal product models
that yields a direct mapping of linkage groups among successful individuals.
Therefore, for BB identification purposes, we use the model-building procedure
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Fig. 1. Population size (Equation 3) and number of function evaluations (Equation 4)
required by eCGA to successfully solve m k-Trap function. The results are averaged over
900 eCGA runs for the function evaluations and 30 bisection runs for the population
size. The relative deviation for the empirical results is less than 1%. The results show
that the population size scales as O(2km log m) and the number of function evaluations
scales as O(2km1.5 log m).

of eCGA. Once the linkage-groups are identified, we use an enumerative BB-wise
mutation operator as used elsewhere [1]. For example, if model builder identifies
m BBs of size k each, the BB-wise algorithm will select the best BB out of 2k

possible ones in each of the m partition. The detailed procedure of the competent
selectomutative GA is given in the following:

1. Initialize the population with random individuals and evaluate their fitness.
2. Selection: This procedure is similar to that of eCGA as described in Section 4.
3. Build the probabilistic model as explained in Section 4 to obtain linkage-

group information.
4. Use the best individual from the population for BB-wise mutation.
5. Consider the first non-mutated BB. Here the BB order is chosen arbitrarily

from left-to-right, however, different schemes can be—or may required to
be—chosen to decide the order of BBs. For example, BB partitions that
contain most active variables might be mutated before those that contain
less active variables.

6. Create 2k − 1 unique individuals with all possible schemata in the chosen
BB partition. Note that the schemata in other partitions are the same as the
original individual (from step 2).

7. Evaluate all 2k − 1 individuals and retain the best for mutation of BBs in
other partitions.

8. Repeat steps 5–7 till BBs of all the partitions have been mutated.

Steps 1–3 are identical to the ones used in eCGA (Section 4) and steps 4–8 are
similar to the BB-wise mutation operator used elsewhere [1].
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Note that the performance of the BB-wise mutation can be slightly improved
by using a greedy heuristic to search for the best among competing BBs, how-
ever, as shown later, the scalability of the probabilistic model building BB-wise
mutation operator is determined by the population-size required to accurately
identify the building blocks.

It should also be noted that while eCGA can only build linkage groups with
non-overlapping variables, the mutation procedure can be easily used with other
linkage identification techniques that can handle overlapping BBs such as BOA
[21] or DSMDGA [12]. However, since the effect of overlapping interactions be-
tween variables is similar to that of an exogenous noise [7], crossover is likely to
be more effective than mutation [1].

Finally, we perform linkage identification only once in the initial generation.
This offline linkage identification works well on problems with BBs of nearly
equal salience. However, for problems with BBs of non-uniform salience, we
would have to perform linkage identification and update BB information in reg-
ular intervals. Furthermore, it might be more efficient to utilize both BB-wise
mutation and eCGA model sampling simultaneously or sequentially along the
lines of hybridization [36,37,38] and time-continuation [39,40] techniques.

However, the objective of this paper is to couple linkage identification with a
mutation operator that performs local search in the BB neighborhood and to ver-
ify its effectiveness in solving boundedly difficult additively separable problems.
Moreover, the aforementioned enhancements can be designed on the proposed
competent selectomutative GA.

5.1 Scalability of the BB-Wise Mutation

The scalability of the selectomutative GA depends on two factors: (1) The popu-
lation size required to build accurate probabilistic models of the linkage groups,
and (2) the total number of evaluations performed by the BB-wise mutation
operator to find optimum BBs in all the partitions.

Pelikan and Sastry [32] developed facetwise models for predicting the critical
and maximum population-size required to correctly identify good interactions
among variables. They showed that the minimum population size scales as

nmin = O (
2km1.05) , (5)

and the maximum population size which avoids discovery of false dependencies
between independent variables is given by

nmax = O (
2km2.1) , (6)

In other words, to avoid incorrect identification of BBs, the population size
should be less than nmax. Since we require that all the BBs be correctly identified
in the first generation itself, the population size required should be greater than
nmin, but less than nmax. That is,

O (
2km1.05) ≤ n ≤ O (

2km2.1) . (7)
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Fig. 2. Population size (Equation 7 and the number of function evaluations (Equa-
tion 10) required by BB-wise mutation for solving m k-Trap function. The results are
averaged over 900 runs for the function evaluations and 30 bisection runs for the pop-
ulation size. The relative deviation for the empirical results is less than 0.2%. The
population size and the number of function evaluations both scale as O(2km1.5).

Since the model building is performed only once, the total number of function
evaluations scales as the population size. That is,

O (
2km1.05) ≤ nfe,1 ≤ O (

2km2.1) . (8)

During BB-wise mutation, we evaluate 2k −1 individuals for determining the
best BBs in each of the m partitions. Therefore, the total number of function
evaluations used during BB-wise mutation is

nfe,2 =
(
2k − 1

)
m = O (

2km
)
. (9)

From Equations 8 and 9, the total number of function evaluations scales as

O (
2km1.05) ≤ nfe ≤ O (

2km2.1) . (10)

We now empirically verify the scale-up of the population size and the number
of function evaluations required for successfully solving the m k-trap problem
with loose linkage in Figures 2(a) and 2(b), respectively. In contrast to fixed
mutation operators which require O(mk log m) (exponential) number of function
evaluations to solve additively separable GA-hard problems [30], the proposed
eCGA-based BB-wise mutation operator that automatically identifies the linkage
groups requires only O(2km1.5) (polynomial) number of evaluations.
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6 eCGA vs. Building-Block-Wise Mutation

The previous two sections demonstrated the scalability of eCGA and the compe-
tent selectomutative GA. In this section, we analyze the relative computational
costs of using eCGA or the BB-wise mutation algorithm for successfully solving
additively separable problems of bounded difficulty.

The results from the above sections (Equa-
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Fig. 3. Empirical verification of
the speed-up (Equation 11) ob-
tained by using the probabilistic
model building BB-wise mutation
over eCGA for the m k-Trap func-
tion. The results show that the
speed-up scales as O(

√
k log m).

tions 4 and 10) indicate that while the
scalability of eCGA is O

(
2k

√
km1.5 log m

)
,

the BB-wise mutation scales as O (
2km1.5

)
.

Therefore, the probabilistic model building
BB-wise mutation operator is O

(√
k log m

)

faster than eCGA in solving boundedly dif-
ficult additively separable problems. That is,
the speed-up—which is defined as the ratio
of number of function evaluations required by
eCGA to that required by the selectomutative
GA—is given by

η =
nfe(eCGA)

nfe(BBwise Mutation)
= O

(√
k log m

)
.

(11)
Empirical results shown in Figure 3 agrees
with the above equation. The results show
that the probabilistic model building BB-wise mutation is O(

√
km) times faster

than the extended compact GA. The results are also in agreement with the
analytical results derived for an ideal BB-wise operator [1].

7 Future Work

We demonstrated the potential of inducting global neighborhood information
into mutation operations via the automatic discovery of linkage groups by prob-
abilistic model-building techniques. The results are very encouraging and war-
rants further research in one of more of the following avenues:

Hybridization of competent crossover and mutation: While we consid-
ered a bounding case of crossover vs. mutation, it is likely to be more efficient
to use an efficient hybrid of competent crossover and mutation operators. For
example, we can consider a hybrid GA with oscillating populations. A large
population is used to gather linkage information and used for crossover, while
a small population is used for searching in BB neighborhood.

Problems with overlapping building blocks: While this paper considered
problems with non-overlapping building blocks, many problems have differ-
ent building blocks that share common components and such problems have
to be analyzed. Since the effect of overlapping variable interactions is similar
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to that of exogenous noise [7], based on our recent analysis [1], a crossover
is likely to be more useful than mutation.

Problems with non-uniform BB salience: In this paper, we considered ad-
ditively separable problems with uniform sub-solution salience. Unlike
uniformly-scaled problems, in non-uniformly scaled problems BBs are identi-
fied sequentially over time. Therefore, in such cases, we would need to regu-
larly update the BB information and develop theory to predict the updating
schedule.

Hierarchical problems: One of the important class of nearly decomposable
problems is hierarchical problems, in which the building-block interactions
are present at more than a single level. Further investigation is necessary to
analyze the performance of BB-wise mutation on hierarchical problems.

8 Summary and Conclusions

In this paper, we have introduced a systematic procedure for the automatic
induction of global neighborhood information into the mutation operator via the
discovery of linkage groups of a problem. We used probabilistic model building
techniques to develop a probabilistic model of linkage information of a search
problem. The BB-wise mutation operators uses the linkage (or neighborhood)
information to perform local search among competing sub-solutions.

We derived an analytical bound and empirically verified the scalability of the
competent mutation operator on boundedly-difficult additively separable prob-
lems. The results showed that the BB-wise mutation operator successfully solves
GA-hard problems, requiring only subquadratic number of function evaluations.
That is, for an additively separable problem with m BBs of size k each, the num-
ber of function evaluations scales as O(2km1.5). We also compared the probabilis-
tic model-building mutation with probabilistic model-building crossover head to
head. For deterministic additively separable problems, we showed that BB-wise
mutation provides significant advantage over crossover. The results show that
the speed-up of using BB-wise mutation over crossover on deterministic problems
is O(

√
k log m), which is in agreement with analytical results [1].
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27. Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University
Press, New York (1996)

28. Beyer, H.G.: Toward a theory of evolution strategies: Self-adaptation. Evolutionary
Computation 3 (1996) 311–347

29. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9 (2001) 159–195

30. Mühlenbein, H.: How genetic algorithms really work: Mutation and hillclimbing.
Parallel Problem Solving from Nature II (1992) 15–26
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